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This paper considers the temporal evolution of two-dimensional Rayleigh-BBnard 
convection in a shallow fluid layer of aspect ratio 2L ( % 1 )  confined laterally by rigid 
sidewalls. Recent studies by Cross et al. (1980, 1983) have shown that for Rayleigh 
numbers in the range R = R,+O(L-l) (where R, is the critical Rayleigh number for 
the corresponding infinite layer) there exists a class of finite-amplitude steady-state 
‘ phase-winding ’ solutions which correspond physically to the possibility of an 
adjustment in the number of rolls in the container as the local value of the Rayleigh 
number is varied. It has been shown (Daniels 1981) that in the temporal evolution 
of the system the final lateral positioning of the rolls occurs on the long timescale 
t = O(L2) when the phase function which determines the number of rolls in the system 
satisfies a one-dimensional diffusion equation but with novel boundary conditions 
that represent the effect of the sidewalls. In the present paper this system is solved 
numerically in order to determine the precise way in which the roll pattern adjusts 
after a change in the Rayleigh number of the system. There is an interesting balance 
between, on the one hand, a tendency for the number of rolls to change by the least 
number possible and, on the other, a tendency for the even or odd nature of the initial 
configuration to be preserved during the transition. In some cases this second 
property renders the natural evolution susceptible to arbitrarily small external 
disturbances, which then dictate the form of the final roll pattern. 

The complete transition involves an analysis of the motion on three timescales, 
a conductive scale t = 0(1), a convective growth scale t = O ( L )  and a convective 
diffusion scale t = O(Lz) .  

1. Introduction 
Although the subject of hydrodynamic stability and the transition from laminar 

to turbulent flow continues to attract considerable theoretical and experimental 
attention, there is still an incomplete understanding of the mechanics of roll-pattern 
adjustment in slightly supercritical flows between, for example, rotating cylinders or 
heated planes. The intriguing series of flow patterns with different numbers of Taylor 
vortices and wavy vortices observed by Coles (1965) in his experiments on the flow 
between rotating cylinders has never been satisfactorily explained and in the 
Rayleigh-BBnard problem, similar transitions in the concentric roll pattern in a 
shallow cylinder observed by Koschmieder & Pallas (1974) still offer a challenge to 
the theoretician. There has been much recent work on roll-pattern formation in the 
Rayleigh-BBnard problem, but although numerical simulations (Normand 1981 ; 
Siggia & Zippelius 1981 ; Greenside, Coughran & Schryer 1982) and semidescriptive 
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arguments (Cross 1982) can provide a valuable insight into the rich variety of possible 
flow configurations, a theoretical description based on a formal asymptotic solution 
of the Navier-Stokes equations is clearly desirable. Unfortunately, theoretical 
progress is made difficult by the complexities of even the simplest realistic models, 
since nonlinear effects, geometrical constraints and the multiplicity of solutions are 
all essential ingredients of this type of flow. 

I n  the Rayleigh-BBnard problem in which convection is induced in a horizontal 
fluid layer by uniform heating from below, it has been established in recent years 
(Daniels 19’77, 1978, 1981 ; Brown & Stewartson 1977 ; Cross et al. 1980, 1983; Cross 
1982) that, even in containers of large horizontal dimensions, the lateral walls can 
have a significant influence on the flow pattern that develops when the Rayleigh 
number R exceeds its critical value. Thus results for the corresponding infinite layer 
cannot, in general, be used to make predictions about either the detailed structure 
or the stability of the roll pattern in practical situations. A major advance in the 
theoretical understanding of convective flows in finite geometries was made when 
Segel (1969) demonstrated how distant lateral walls could be incorporated in a 
description of the finite-amplitude motion at slightly supercritical Rayleigh numbers 
based on the use of multiple scaling techniques. A similar formulation was adopted 
in a related study by Newel1 & Whitehead (1969). I n  the present work attention is 
restricted to the case of two-dimensional motion in the form of rolls parallel to rigid, 
perfectly insulated lateral walls ; Segel’s results provide a description of the motion 
in the range R-R, = 0(LW2) ,  where L is the (large) semi-aspect ratio of the container 
and R, is the critical Rayleigh number for the corresponding infinite layer. At the 
lateral walls it is found that the amplitude function A defining the strength of the 
convective motion across the layer must vanish. The main properties of the steady 
solution are, first, an O(LP2)  increase in the critical Rayleigh number over that for 
the infinite layer due to the presence of the lateral walls, and, secondly, an amplitude 
profile which adjusts from an infinitesimal sinusoidal form a t  the onset of motion 
to the familiar finite-amplitude form of magnitude (R-R,)B as (R- R,) L2+ co ; a t  
this point the profile A is virtually uniform across the container, the adjustment to 
the lateral boundary conditions being made in the vicinity of the sidewalls. 

In  order to obtain a precise description of the number of rolls in the system it is 
actually necessary to consider higher-order terms in the solution and match these to 
appropriate boundary-layer solutions valid near each sidewall (Daniels 1978). It is 
found that four solutions evolve from the neighbourhood of the Rayleigh number 
R, = R, + 0(L-2) ,  two of which correspond to an even number of rolls and two to an 
odd number of rolls. These solutions bifurcate at R = R, f: O(L?), but only the pair 
that stem from the lower, critical value of R are stable to two-dimensional 
disturbances (this pair may be even or odd depending on the precise value of L) .  In 
the range R - R, = 0(Lu2) other steady convective solutions become possible and may 
be expressed in terms of Jacobian elliptic functions (Segel 1969), but i t  appears that 
these are all unstable (Daniels 1977), such solutions having positions of zero 
amplitude in the interior of the container. 

Knowledge of the higher-order terms mentioned above also provides a means of 
determining the range of validity of the asymptotic expansions which form the basis 
of the solution for R- R, = O(L-2).  It emerges (Cross et al. 1980, 1983; Daniels 1981, 
appendix) that when R- R, = O(L-l) a new regime evolves in which the motion near 
the sidewalls is sufficiently strong to provoke a reaction that requires an adjustment 
in the roll pattern throughout the container. In  preparation for the more detailed 
analysis to be presented below, it is perhaps useful at this stage to understand how 
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the different regimes arise in the context of the familiar amplitude equation governing 
slightly supercritical flows. For two-dimensional motion with stress-free horizontal 
boundaries, and with 

where x and t are appropriate non-dimensional length- and timescales and P is the 
Prandtl number, this equation has the form 

A, = Axx+SA-A IA12. (1.2) 

P T  = Pxx - P45 + 6P- P3> (1.3) 

(1.4) 

Use of the polar form A ( X ,  T )  = pe’@ then gives 

P A  = P$xx +2PX $X> 
and since the solution for the non-dimensional stream function $ has the form 

= 4iri-1~-1pexp{z+i$}sinnz+c.c., 

it can be seen that p effectively represents the strength of the convection and 4 
determines any adjustment in wavelength. I n  the regime considered by Segel (1969) 
and Daniels (1978) where S =  0(1), all of the terms in (1.3) and (1.4) are of equal 
importance and solutions must satisfy p( k 1 , ~ )  = 0. In  the steady state this leads 
to the requirement that 4 is constant in (1.3) and (1.4), and so the wavelength of 
convection remains a t  the critical value of 4 2 .  

As S increases, the steady-state solution of (1.3) is dominated by the last two terms, 
so that p - & except in boundary layers near the lateral walls. Furthermore, this 
steady state is likely to be achieved on the relatively short timescale of T - El. 

Thereafter, since px x 0, (1.4) is dominated by the first two terms and, on the longer 
timescale r - 1 ,  can lead to a steady-state solution in which 4 is a linear function 
of x: 4 = qx+c. 
The value of q is associated with the number of rolls in the container since the effective 
wavelength in (1.5) is 2 / 2  -2z-lqL-l and thus there are, roughly speaking, 

2/2 L i- 27t-lq (1 .7)  

rolls contained between the lateral walls x = +_L. In order to determine q i t  is 
necessary to  calculate the flow induced near the lateral walls by the core solution 
p - &. For S < L the reaction is essentially passive, leads to  a zero value of q in (1.6), 
and thus (as stated above) no change in the wavelength of the roll pattern from the 
critical value 2/2. However, for 6 = O ( L )  the sidewall interaction is found to  be 
sufficient to generate non-zero values of q and solutions with different numbers of 
rolls, (1.7),  become possible. These steady-state solutions were first established by 
Cross et al. (1980) and designated ‘phase-winding ’ solutions in view of the horizontal 
variation involved in (1.6). Full details of the formal asymptotic structure including 
the sidewall interaction which involves consideration of double boundary-layer 
regions near each lateral wall, are given in a later paper (Cross et al. 1983). 

I n  the range R- R, = O(L- l ) ,  then, it is found that the four solutions stemming 
from the neighbourhood of R, are joined by a whole new family of solutions, all with 
the same (uniform) strength across the width of the container, but containing 
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different numbers of rolls. Stability considerations can be used to rule out the physical 
occurrence of a certain proportion of these phase-winding solutions (Daniels 1981 ), 
but in general, at  a given value of the Rayleigh number in the range R- R, = O(L-'), 
there remains a multiple choice of steady-state solutions which are stable to 
two-dimensional disturbances. Thus the selection of a particular steady state can only 
be guaranteed by an analysis of the evolutionary properties of the system; it is this 
analysis which is undertaken in the present investigation. One of the more interesting 
findings is that after a change in the Rayleigh number there is not a direct preference 
for the number of rolls to change by the minimum number possible, consistent with 
the attainment of a stable steady state. Instead the preservation of the even or odd 
nature of the initial configuration is found to be of primary significance, with a 
possible transition from an even to an odd solution (or vice versa) only if dictated 
by the requirements of stability. 

The governing equations and boundary conditions are stated in $2. It is assumed 
that initially the Rayleigh number lies in the range R- R, = O(L-l) so that one of 
the steady-state phase-winding solutions is established in the container. This initial 
state is also described in $2. At time t = 0 the temperature of the lower surface is 
raised by an amount O(L-'), causing an effective increase in the Rayleigh number 
of the same magnitude. The subsequent evolution of the system is then shown to occur 
on three timescales. The first, when t = O(1),  corresponds to the conductive timescale 
needed to establish the new basic temperature profile in the container and is described 
in $3. This change then initiates the second stage of evolution on the longer timescale 
t = O(L) ,  when the strength of the convective motion is adjusted to a size appropriate 
to the new value of the Rayleigh number throughout the container. This is described 
in $4. In the main body of the fluid (or core) this change has no effect on the roll 
pattern established at t = 0, although an analysis of the motion in the boundary layers 
near each sidewall ($5) demonstrates that an interaction is initiated there that begins 
to influence the roll pattern. The influence gradually penetrates from each sidewall 
inwards into the core until, on the timescale t = O(L2),  a new roll pattern evolves 
there. Although this final evolution, described in $6, is governed by a linear diffusion 
equation for the 'phase function' 4, it is rendered nonlinear by the form of the 
boundary conditions that result from matching with solutions in the boundary layers 
near each sidewall. Some of the basic properties of this final evolutionary system are 
discussed in $7 ,  and these assist in the interpretation of full numerical solutions of 
the system, described in $8. Analytic solutions are possible in certain limiting cases 
and these are outlined in Appendices A and B. The results are discussed in $9. 

2. Governing equations and initial state 

two-dimensional Oberbeck-Boussinesq equations : 
The motion that evolves in the region 0 < z < 1 ,  - L < x < L is governed by the 

u,+w, = 0, 

Ut + uu, + wu, = - p ,  + PVZU, 

wt i- UW, i- WW, = -p ,  i- PV'W -I- PT, 

+ uT, i- wT, - RW = V'T, I 

where the Cartesian coordinates (x, z ) ,  time t ,  velocity components (u, w), reduced 
pressure p and perturbation T from the linear conductive temperature profile are 
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non-dimensionalized with respect to  the quantities d ,  d 2 / K ,  K / d ,  p”K2/d2  and ~ v / & g d ~  
respectively, where d is the height of the container, K is the thermal diffusivity of 
the fluid, v is the kinematic viscosity, p” is the density, d is the coefficient of thermal 
expansion and g is the acceleration due to gravity. The Rayleigh number R and 
Prandtl number P are defined by 

V p = -  dgd3(T, - T,) 
R =  

V K  K ’  

where T,  < 7 are the constant temperatures of the upper and lower surfaces. These 
are assumed stress-free so that 

w = U ,  = T =  0 ( z =  0 , l ) .  

The sidewalls are taken to be rigid and perfectly insulating: 

(2.3) 

u = w = T, = 0 (X = k L ) .  (2.4) 

u=p+,, w = -  p+,, 11. = 0 a t  (0,O). (2.5) 

19 = -Rz+T. (2.6) 

R = R,+ 18n2AL-l, A = 0 ( 1 ) ,  (2.7) 

A stream function p+ is defined by 

The non-dimensional temperature field measured from zero a t  the lower surface is 

We shall be concerned with solutions for Rayleigh numbers in the range 

where R, = 77r4 is the critical Rayleigh number for the corresponding infinite layer, 
and L 9 1. Let us assume that initially one of the steady-state solutions described 
by Cross et al. (1983) is established in the container a t  a finite value of A :  

A = A,. (2.8) 

It should be noted that the expansions given by Cross et al. (1983) are based on the 
small parameter e = AL-l and the large parameter L,  but here it is more convenient 
to use the single large parameter L and allow the variable parameter A to represent 
changes in the Rayleigh number in the range under consideration. The results of Cross 
et al. (1983) are then easily adapted to give the asymptotic structure of the initial 
flow pattern as follows. 

I n  the main body of the fluid (or core), where 

x = L-lx = 0(1), 

11. = ~ - ~ 4 i n - 1 ( A 0 ~ i = x / ~ 2 - A *  0 e-inz/dz) sinnz+ O(L-l), 

(2.9) 

(2.10) 

the stream function is given by 

where * denotes complex conjugate and 

A, = Aiei$o(x), $, = qo X+C,. (2.11) 

At X = - 1 this solution matches with that in a boundary-layer region where 

rt = L-++ L) = o(i) (2.12) 
and 

11. = ~-24in-l{(A,, + L-+ iA1) - e ixx/~”2-  (az+L-iA:) e-inx/v’2} sinnz+O(L-%), (2.13) 
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where A t  a A, = A'g ei6d-l) tanh- 
d 2  

and 

A, = A, ei60(-l) {Er(A'g rf) + iLi(AB a)}. 
a 

Lr(X) = a" sech2 - 
4 2  

Here 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
a 

4 2  
Ei(rf) = 6 +c"tanh--+I(a),  

where a", 6 and c" are real constants, 

a 
(2.18) 

At a = 0 this boundary-layer solution matches with that in a sidewall region where 

(2.21) 

(2.22) 

x1 = z + L  = 0(1) and $k = L-l$k,+ ...) 

@o = 4in-1d0{(ax, + b )  eixz/d2 - (a*zl + b*) ednsld2 + id e-2xz1} sin nz, 

and where matching with (2.13) requires that 

A,a = A,,(Z = 0), A,b = Al(X = 0). (2.23) 

The three boundary conditions (2.4) a t  x1 = 0 also lead to the relation 

b = -u*u-/~*u*, (2.24) 

(2.25) 
where 

and 

a = a,+iai = (-16+52/2 i)/18n 

P = P, + iPi = 1/31 eiX = - ( 16 + 13 2 / 2  i) edndZL/1 SIT .  (2.26) 

The real constant d can be expressed in terms of b as 

d = ib e-inLld2 - ib* e ixLld2  (2.27) 

The whole system is closed by completing the matching between A, and the core 
solution (2.10) and carrying out a similar analysis of the boundary-layer and sidewall 
regions near x: = L. In the boundary-layer solution (2.13) the constants a" and 6 are 
determined as 

w 

(2.28) 

(2.29) 

i 
1 

(a, + IPI cos {2#,( - 1 ) + x>), a = -- 
2/2 

6 = -I( 2 010 + IPI sin {W,( - 1 1 + X I )  9 

where a, = ~ l i  - 4 2  I ( 0 )  = (5 + 21P-1 + 40P2)/96 2/2 n, 
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FIGURE 1 .  Steady-state solutions for a case corresponding to L = 5 and P = 10. Solutions at  a given 
value of A are given by the points of intersection of the appropriate sloping line of gradient A-' 
(those for A = 0.5 and A = 5 are shown) with the sinusoidal curves (class I solutions) or the vertical 
lines (class I1 solutions). The light sections are unstable to odd or even disturbances in q5, while 
the dotted sections are only unstable to even disturbances in q5 (see $7) .  The heavy sections are 
stable and correspond to flows with the given number of rolls. There are two solutions a t  each point 
of intersection with a sinusoidal curve and four a t  each intersection with a vertical line. 

although c" remains undetermined a t  this stage of the expansion. I n  the core solution 
(2.11) two sets of values of po and C, are found to be possible. 

In  the first set (class I solution) 

2p0 = - A , ( a , - ( - l ) n ~ / 3 ~ ~ i n { 2 q , - ~ } ) ,  C, =inn (n = 0 , 1 , 2 , 3 ) .  (2.30) 

Here only four values of n represent distinct solutions since an increase in C, by 27r 
has no effect on (2.10). The n = 0 and n = 2 solutions are equal and opposite flows 
with an even number of rolls, the vertical component of velocity being symmetric 
about x = 0 to leading order, from (2.10). The n = 1 and n = 3 solutions are equal 
and opposite flows, but with an odd number of rolls. These solutions will be referred 
to as even and odd solutions respectively. 

In  the second set (class I1 solution) 

2g, = X-;7r+mn = - A o ( a , - ( - l ) m ~ ~ ~ c ~ ~ 2 C o )  (2.31) 

Here a discrete set of solutions exists for integer values of m, each having a constant 
value of qo. The corresponding range of values of A, is restricted by the inequality 
12q,A;1+ol,l < 1/31 and is traversed as the value of C, varies by in. These solutions, 
which are neither even nor odd, therefore connect the even and odd class I solutions, 
as may be seen from a graphical construction of the steady-state solutions (2.30) and 
(2.31) for two typical cases in figures 1 and 2. A solution (2.30) or (2.31) corresponds 
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FIGURE 2 .  Steady-state solutions for a case corresponding to L = 5 and P = 0.2. 

to a point of intersection of a straight line of gradient A - l  = A;l with one of the 
sinusoidal curves representing the right-hand side of (2.30) or vertical lines representing 
the right-hand side of (2.31). Figures 1 and 2 will be discussed in greater detail in 
$57, 8 but it is worth noting the crucial nature of the value of the Prandtl number 
which, through the value of a, in (2.29), determines whether an evolution with a 
constant number of rolls is possible (figure 1 )  or whether the number of rolls must 
change as the Rayleigh number is increased (figure 2 ) .  

3. Evolution of the base state: t = O(1)  

Rayleigh number such that 
A steady state of the type described in fj2, equivalent to a slightly supercritical 

A = A,, q = P o ,  C = C,, (3.1) 

is assumed to exist initially. At t = 0 the temperature difference between the 
horizontal surfaces is raised by a non-dimensional amount 18.n2L-lAB. When t = 0(1) 
the basic (i.e. externally generated) temperature field measured from zero a t  the lower 
surface can then be expressed as 

O = -(R,+ 1 8 ~ ~ ( d , + d g ) L - ' ) ~ +  187~~A, L-lOB(z, t ) ,  (3.2) 

where, from (2.1), 0, satisfies 

OB,, = OBt' eB(Oj t )  = OB(1, t )  = 0, 8, (Z ,  0) = 2. (3.3) 

The solution of this linear system is easily determined, and, as t+ 00, O,+O so that 
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the basic temperature field (3.2) adjusts to the form appropriate to a new value of 
the Rayleigh number such that 

A = d,+dB = A, ,  say. (3.4) 

Meanwhile, the cellular motion remains unaffected at leading order since Aot, AOt, a,, 
~, ,  must all be zero, and so the solutions (2.11), (2.14), (2.15) and (2.22) all remain 
unchanged when t = O(1). 

The evolution of the base state modelled by (3.3) could be generalized to 
incorporate more gradual changes in external conditions on the timescale t ,  or changes 
that might invoke minor contributions to the velocity field, but the main conclusion 
that there can be no significant change in the cellular motion during this period still 
stands. 

4. Adjustment in convective amplitude: t = O ( L )  

appropriate to define a long timescale 7" by 
The first significant effect on the cellular motion occurs when t = O ( L ) ,  and it is 

the factor involving the Prandtl number being included for convenience. This 
timescale is, of course, suggested by the fact that the linear growth rate of 
disturbances near R, is of order R-R,,  i.e. of order L-l. 

The core solution is now given by (2.10), but in which we now suppose 
A,  = A,(X, 7"). The equation for A, obtained at order L-i after substitution of (2.10) 
into (2.1) (in which R = R,+ 187c2L-lA,) is 

( 4 4  

A, = eiCJx), +, = qo X+ c,, (4.3) 

A,; = d, A,  - A ,  IA,12. 

The initial condition at  f =  0 is, from (2.11), 

and so the required solution is 

Thus 

representing an adjustment in the amplitude of the convective flow to the value 
appropriate to the new Rayleigh number. Note that the roll pattern itself is 
unchanged since the complex argument of A, is always +,(X). This is because diffusive 
effects in the BBnard problem occur a t  a lengthscale z - ti and so the timescale 
t = O ( L )  is too short for these to affect the core equation (4.2). Diffusion, as we shall 
see below, is limited to the boundary-layer lengthscale when t = O(L), and the effect 
of the lateral walls can only penetrate into the core, where x = O ( L )  (and thereby 
change the roll pattern) when t = O(L2) .  

In the boundary-layer region where = O( 1 )  the solution on the timescale +is given 
by (2.13), but in which we now suppose A,, = A,, ,(a, 7"). The equations for A, and 
A, are found at  order L-i and Ld2 after substitution of (2.13) into the governing 
equations (2.1). They are 
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and 

a,; = A,,, + A ,  a, - 2 lA,l2 a, -A; A: 

- i{k, A ,  a,, + k, m,,,, - (k, + k,) lA,l2 A,, - (k, + k,) A:, - k, a,,;}, (4.7) 

(4.8) 
where k, = 813 2/27~, 

with initial conditions a t  7" = 0 given by (2.14) and (2.15). It should be noted that, 
strictly speaking, the solution for a, is first adjusted when t = O(Li), but the 
adjustment is merely the addition of a term proportional to tL-4 which matches with 
the O(f)  term in do as f + O ,  so that (2.15) remains the correct initial condition for 
(4.7) at f =  0. 

The boundary conditions for (4.6) and (4.7) a t  g = 0 are supplied by matching with 
the sidewall-region solution (2.21) in which (2.22) remains valid except that a and 
b are now parametrically dependent upon 7. Thus we require 

AO(O,7") = 0 (4.9) 

and, from (2.24), 

A,(O, 7") = -a*B,,(O, f)-/3*A&(O, ?). (4.10) 

Finally, the boundary-layer solution must match with the core solution (4.4), giving 

A,+A,(-1,7"), A l , - + A o x ( - ~ , ~ )  as X+m. (4.11) 

5. The evolution of the boundary layer 
In order to simplify the boundary-layer system (4.6)-(4.11) we set 

= d;ix, 7 = ;i, A, = ei@o(-l)x(X, T I ,  ] (5.1) A, = A ,  ei6J-1) {X,(X, T )  + iXi (X, T I } ,  

to obtain the set of real equations 
- -  

(5.2) 

A, = A,-,-+ X- A,, 
- - - _ _  
A,? = Arxr+ A, - 3A2Ar, 

- -  _ _  - 
Xi? = X i x ~ + X i - A 2 A i - { k l X ~ + k , A ~ r r -  (2k,+ k,+ k,)A2A,--k,Ar7}. 

The initial conditions become 

and the boundary conditions are 

Z(O,T) = 0, X(co,~) = Abe"A, -A,+A,e2')-+; 

-&(O>T) = ( - ~ ~ , - I P I C O S { ~ ~ , ( - ~ ) + ~ } ) B ~ O , ; ~ ) ,  X r d ~ , ~ )  = 0 ;  (5.4) 

xi(O,?) = (a i+I /3Is in{2~, ( -1)+~})X~0,~) ,  

Xidco,7) = A ~ d ; ' e i ( A , - - d 0 + A , e z 7 ) - ~ ~ , ~ ( - 1 ) .  

A more general initial-value problem can be considered in which the profile for A,  
in the core at 7" = 0 is a completely arbitrary complex function of X. A solution similar 
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to (4.4) can still be found, and in the boundary layer both xrr and ziX are then 
generally noh-zero as X+ co . 

Possible asymptotic forms for x,. and xi for large Xare 

where El, E,, E, and 5, are constants. The initial conditions (5.3) and boundary 
conditions (5.4) imply that these have the values 

El = 6, = 0, 5, = A~A;'r$,(-l) ,  E4 = A 0 A ~ ~ ( K , + K , + c " - . \ / 2 b ) .  (5.6) 

Although the first of the asymptotic forms (5 .5)  is uniformly valid for x $ 1 and all 
?, we shall see below that the second is only valid for x $ T i  when 7 $ 1,  and thus 
the influence of the initial core profile r$o(X) on the flow near the wall begins to be 
reduced. As ?+ co the boundary layer expands and allows the influence of the lateral 
wall to spread into the core. It is this reaction to the increase in Rayleigh number 
that triggers the eventual adjustment of the roll pattern throughout the container. 

In order to analyse the boundary-layer structure for large 7 it is first noted that, 
from (5 .2)  and (5.4), 

(5.7) 
x 

d 2  

&. = (-01,. - 1/31 COS {2r$,( - 1 )  X}) xdx, 7). 

z= tanh-+O(e-,?) as ?+a, 

and also that the complete solution for z,. is 

(5.8) 

The solution for xi develops a double structure as ?+ 00, consisting of an inner region 
where X =  0(1) and an outer region where T j  = x/?i = O(1). This leads to an 
expansion in powers of T i ,  and in the inner region the solution has the form 
- 
Ai = T ~ { c ,  0}  + {c, O + b, (XO - 2 / 2 )  + I (  X)} 

+?-+{c, O + ~ , ( X O - ~ ~ ) + C ~ ( ~ X ~ O + O - ~ / ~ ~ ) } + O ( ? - ~ )  (5.9) 

as ?-+ co, where O = tanh ( x / 4 2 )  and co, c , ,  c,, 6 ,  and b, are arbitrary constants. The 
leading term of order ?i is made necessary by the form of the outer solution and also 
generates the particular solution involving c, at order 7-4 via the time-derivative term 
xi- in (5 .2) .  The constants b, and b, are determined by the boundary condition (5.4) 
at'X= o as 

b, =-~(ao+~/3~s in{2~ , ( -1 )+~})  = 6 =  pod;', b, = 0 ,  (5.10) 

and then, for X$ 1, 

Xi N Tico + {b ,  X+ C ,  - 1 / 2  b, + K ,  + K,} + ?-i{$o X' - c0 ..X/d2 + c0 + c,}. (5.1 1) 

In  the outer region the time derivative Xi? must balance at leading order, and since 

(5.12) 
2 N 1 in this region, 

Xi = ?;Go(?) + G,(?j) + O(?-i), 

Gg+$jGA-Vo = 0, 

GT+$jGi = 0. 

where 

The general solutions are 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

1 +2 Go =poi;+p,{27c-ze 4 -Tj(l-erf[$j])}, 

'1 = pZ+p3{l -erf [$j1>' 
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Now (5 .5)  requires that 

giving 
p, = A c l q , ,  p, = d ~ A $ ( K , + K , + F - 1 / 2  A r l q , ) .  

(5 .17)  

(5 .18)  

The solutions (5 .15)  and (5 .16)  must also match with the inner form (5 .11) ,  which 
requires that 

( ? + O ) ,  (5 .19)  I Go - C o + b , f + ~ c o ? j 2 ,  

GI N c1 - 4 2  b, + Kl + K ,  - C, 7 / z / 2 ,  
and so 

(5 .20)  

This fixes the unknown constants p, and p, in the outer solution and c, and c, in the 
inner solution as 

(5 .21)  I 
c, = A ~ A , i F + ( A ' g A ; i -  1 )  ( K , + K , +  1 / 2  q ,A;:A; i ) ,  1 

and completes the solution to terms of order 1 in each region. The leading terms 
are 

(5 .22)  

A numerical solution of the system (5.2)-(5.4) was undertaken to  confirm the above 
structure, and the results are shown in figure 3 .  Although the value of F is unknown 
its contribution to the solution for xi is 

(5 .24)  

and this portion can simply be excluded from the numerical solution by setting F = 0. 
The various parameters used in the solution correspond to a semi-aspect ratio L = 5 
and a Prandtl number P = 0 .2  as featured in figure 2 .  The initial and final values 
of the Rayleigh number are taken as A ,  = 0.33 and A ,  = 4.55 and the initial state 
has qo = -+ and C, = 0. The value of 6 is - 1.52. The numerical method of solution 
was based on forward differences in ;? and centred differences in X, and the results 
shown in figure 3 are for step lengths of 0.005 and 0 .2  (respectively) with an outer 
boundary at x =  16. 

The main features of the asymptotic results are adequately reproduced, including 
the double structure of the solution for xi as ? + 00. I n  the inner zone the development 
of the hyperbolic-tangent profile (5 .22)  can be observed attaining its maximum value 
( - 1.59?4) at the edge of the zone. Outside this the error-function profile (5 .23)  takes 
over and adjusts the gradient xix from the value qo A;l  x - 1.52 to the value 
qo A;' x - 0.11 a t  the expanding edge of the layer. In  terms of the overall amplitude 
function, this is equivalent to an adjustment of the gradient of the phase function 
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Ai 
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A, 
0.1 

5 10 15 

A 

10 15 
I 

_ -  a 
FIQURE 3. Boundary-layer evolution. Numerical solution of (5.2)-(5.4) showing profiles of A ,  A, 

and xi as functions of at various values of ;i. See text for values of the various parameters. 

from a value q,, A J A ,  associated with the relative change in Rayleigh number, A , / A , ,  
to the value qo associated with the initial core profile; in between, the form (5.23) 
is the embryo of the new core solution and represents the first significant modification 
to the roll pattern. As the outer zone of the boundary layer spreads, i t  eventually 
becomes comparable in size to the core, and the asymptotic structure for 7" = 0(1) 
must be revised, The boundary layer is expanding such that 2 - 7"i or x - Lifi, and 
this is comparable to the horizontal scale of the core when 7" - L. Also, the solution 
for xi is of order T i ,  while that for xis of order one, again suggesting breakdown when 
7" - L. This breakdown heralds the onset of the final evolutionary stage when 
t = O(L2) and the roll pattern is adjusted to its new form. 
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6. Evolution of the roll pattern: t = O(L2)  
We define a timescale 7 as 

t=- 1+pL27, 
4P 

as suggested by the analysis of $ 5 ,  and in the core the solution is given by (2.10) but 
now with 

(6-2) A = A! ei$(X, 7 ) .  
0 

Substitution of (2.10) into the governing equations (2.1) and consideration of terms 
to order L-! shows that $ satisfies the diffusion equation 

$7 = $xx 
In  view of (4.5) the initial condition for this equation is 

$ = $ o m  = Qo x+ co (6.4) 

at 7 = 0. 
I n  the boundary layer at X = - 1 the long timescale (6.1) relegates all the time 

derivatives in (4.6) and (4.7) to higher order, and so 7 appears only parametrically 
in the solutions. The required solution for 2, that  matches with (6.2) and the initial 
form (5.7) is therefore 

A, = Aitanh(%a e'Q(-1,7), (6.5) 

while the solution for a, is 
A, = A,{&JA'~& + iLi(A!X)> e i $ ( - ~ , ~ ) ,  (6.6) 

where the coefficients 6, 6 and c" are parametrically dependent upon 7. A, and A, are 
still related by the condition (4.10), and so, in particular, 

6 = -*(ao+ IPI sin {2$( - 1 , ~ )  +x>). 

$ x ( - - l , ~ )  = A,6 = - ~ A l ( a o + I ~ I s i n { 2 $ ( - 1 , ~ ) + ~ > ) .  

$X(1> 7) = -i4(ao - IPI sin {2$(1,7) - x>). 

(6.7) 

Now A, - iA$6xei$(-1,7) as x+ 00, and this matches with the core solution (6.2) if 

(6.8) 

From a similar consideration of the boundary layer at X = 1 ,  

(6.9) 

Thus the new roll pattern must be found as the final steady-state solution of (6.3) 
specified by the original roll pattern and the boundary conditions (6.8) and (6.9) 
imposed by the interaction with the sidewalls. These conditions actually provoke the 
evolution, and it should be noted that the initial singularities at X = 1 inferred by 
(6.8), (6.9) and (6.4) correspond to the outer zones of the double-structured boundary 
layers described in $ 5 .  Thus the singularities are smoothed out during the period when 
.7 = O( 1 ) .  Further discussion of the initial development of the system a t  7 = 0 is given 
in Appendix A. 

Numerical solutions of the system (6.3), (6.4), (6.8) and (6.9) were found using a 
finite-difference scheme that handled the nonlinearity in the boundary conditions by 
a Newton iteration. The scheme used $ and s = $x as independent variables, and 
then the first-order system 

$7=sx '  s = $ x  (6.10) 
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was discretized using central differences in both X and T .  The resulting set of 
boundary conditions and equations was linearized by applying a Newton iteration, 
and the evaluation of the increments required the solution of a five-band matrix 
equation. The iteration was usually required to converge to within a tolerance of 
and this was generally achieved within two or three iterations for a time step of 0.01 
and taking the solution a t  the previous time step as initial guess. No special treatment 
of the initial discontinuity in gradient a t  T = 0, X = k 1 was used; this never affected 
convergence and variations in the size of both the space and time steps suggested 
only minor loss of accuracy from this source. Step lengths in the X-direction were 
normally taken as either 0.1 or 0.02. Final convergence of the scheme to steady state 
is easily tested by the form of s, which must approach a constant value across the 
container. 

7. Fundamental properties of the final stage of evolution 
Before presenting the numerical results i t  is useful to outline some of the basic 

properties of the system (6.3), (6.4), (6.8), (6.9) governing the final evolution. To 
summarize the results of $6, the roll pattern is determined by the phase function 
+ ( X ,  T ) ,  which satisfies 

(7 .1)  1 $ r = $ x x  ( - 1 < X < l ,  T > O ) ,  

$ ( - Y O )  = $ O W  = q o x + c o ,  

$x( k 1 , 7 )  = - $ A ( a o f  IPI sinP$( f 1 , 7 )  T x ) ) ,  
where qo and Co are fixed by the initial configuration and A is a measure of the new 
Rayleigh number (i.e. A = A ,  in the notation of $ 8 3 4 ) .  

7.1.  Steady states 
These are possible when $ has the form 

and it is easily shown from (7 .1 )  that this requires either 

2q = - A ( a , -  ( -  l )n 1/31 sin ( 2 q - x ) ) ,  C = inn (n integer) (class I solution) (7.3) 

or 29 = x-$ + mn (m integer) (class I1 solution), 

consistent with the results (2.30) and (2.31) above (see also figures 1 and 2 ) .  

(7.4) 

7.2. Stability 

The stability of these states has been discussed by Daniels (1981) by considering 
the evolution of a perturbation to (7 .2) .  The main results may be summarized as 
follows. First, all of the class I1 solutions are unstable. Of the class I solutions, the 
ones for which 

A ( - -  1/31 COS ( 2 q - x )  < 0, (7.5) 

i.e. {gradient of right-hand side of (7.3) as a function of 2q) < 0, are stable. Although 
the other class I solutions are all unstable, it  is important to note that their 
destabilization is crucially dependent upon whether the disturbance to  $ in (7.2) is 
even or odd about X = 0. Even disturbances are most dangerous and destabilize all 
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solutions that do not satisfy (7.5). However, odd disturbances only destabilize those 
solutions for which 

A (  - l)fl IPI cos (2q-x) > 1 ,  (7.6) 

which, in terms of the graphical constructions of figures 1 and 2, can usefully be 
expressed as 

I as a function of 2q 

These two sides are equal at points of tangency of the straight line and sinusoidal 
constructions representing the two sides of (7.3) in figures 1 and 2, and are the points 
at which new pairs of steady-state phase-winding solutions exist (or cease to exist) 
as a function of the Rayleigh number. In contrast, the true points of neutral stability 
(i.e. when even disturbances are allowed) are those a t  which the left-hand side of (7.5) 
is zero, and these are the points at which the class I1 solutions bifurcate from the 
class I solutions. In figures 1 and 2 the stable and unstable solutions satisfying (7.5) 
and (7.6) respectively are shown by heavy and light lines. The unstable solutions that 
are destabilized only by even disturbances are shown by dotted lines. 

} .  (7.7) 
gradient of left-hand side of (7.3) I>{ as a function of 2q 

gradient of right-hand side of (7.3) 

7.3. Preservation of even and odd solutions 
A fundamental property of the system (7.1) is the preservation of an even or odd 
solution with time (i.e. a solution for q5 for which the resulting flow pattern is either 
even or odd about X = 0). This can be seen by writing 

q5 = 9E+d0> (7.8) 

q5y = $92, (7.9) 

where q5E and q5O are the even and odd parts of q5. Substitution into (7.1) shows that 

q5$(-1,7) = -$A~P~cos{2q5°(-1,7)+x}~in {2dE(-1,7)}, (7.10) 

&( -- 1 , ~ )  = -$A(a,+ IPI sin{2$O( - 1 , ~ )  +x} c0s{2+~( - 1,  T ) } ,  (7.11) 

from which it can be seen that possible solutions for q5E for all time are q5E = inn, 
where n is an integer. q5O is then determined using (7.11). Thus if the initial 
configuration is one of the steady-state solutions in which q5"(X, 0) = C, = inn the 
solution for q5E will retain this form for all 7 > 0, and it follows from (6.2) and (2.10) 
that the flow pattern remains either even or odd throughout the entire evolution. This 
implies that the solution can actually evolve to an unstable state (see the numerical 
study below) if no perturbation to the even part of q5 occurs during the evolution; 
the change in the value of A necessitates a change in the value of q, but this is 
effectively a perturbation to only the odd part of the final solution for q5. Thus the 
system does not differentiate between the dotted and heavy sections of the curves 
in figures 1 and 2, with the result that the roll pattern can adjust to an unstable state 
on one of the dotted sections. 

In practice, physical conditions might be expected to introduce a disturbance which 
would lead to a contribution to the even part of q5, and then the full stability criterion 
(7.5) must come into effect and drive the system to a stable configuration. For 
example, suppose that initially 

q5E = $m+E$(X) (2 4 l) ,  (7.12) 



Roll-pattern evolution in Jinite-amplitude Rayleigh-Be'nurd convection 141 

representing a small perturbation of order C to the even part of q5. Then when 7 = O(1) 
the solution can be expanded in powers of 2 :  

$O = $O+ ..., rPE = inn+$"+ ..., (7.13) 
/ 

and from (7.10) and (7.11), and $" satisfy 

(7.14) I $,", E = -0 E $Xk, $J( -1,T) = -d IpI( - 1)" $"( - 1 , ~ )  COS{~$'( - 1 , ~ )  +x}, 

$$( - 1 , ~ )  = -id (a,+ I/3 I ( - 1)" sin {2$O( - 1 , ~ )  + X I ) .  
As 7-f co i t  can be expected that + q X ,  where 

q = -id (a, + Ip I( - 1)" sin {x - 2q}), (7.15) 

and these values of q and n will correspond to a solution on either the heavy or dotted 
portions of the curves in figures 1 and 2,  the evolution of $O being subject to the 
stability criterion (7.6). The new roll pattern a t  this stage is approximately the one 
that would be established if no perturbation to the even part of q5 were introduced 
into the system. However, assuming a non-zero perturbation in (7.12) the solution 

7" - @(X)ek7 (7.16) for $" will have the form 

as7-+co,  where 

w - k@ = 0, @'( - 1)  = - A I/3 I( - 1)" @( - 1 )  cos (2g- x), (7.17) 

and k takes its maximum value. The precise form of @ will depend on the initial 
disturbance $ ( X ) ,  but it is clear from (7.17) that in general 

@ cc cosh dX, (7.18) 

(7.19) 
where 

kitanhki = dIpI( - l )"cos(2p-~) .  

Thus the maximum value of k is positive if and only if 1/31 ( -  1)" cos (29-x) > 0. This 
is consistent with the stability criterion (7.5): if q and n are such that the solution 
is close to a stable state as 7-f co then the maximum value of k is negative, the 
solution (7.16) decays to zero and the final state is the one in which p = 9. Conversely, 
if q and n are such that the solution is close to an unstable state as 7-f 00, the 
maximum value of k is positive and the solution (7.16) grows until the expansion (7.13) 
fails when 7 - k-' Iln El. Both $O and q5E -$nn are then order one, and a second stage 
of evolution to a new roll pattern with a value of q different from q and a new value 
of n will occur. 

This is perhaps the most interesting property of the evolutionary system, since it 
demonstrates that, in some circumstances it is not really sufficient to consider simply 
the 'natural evolution' of the roll pattern due to the change in Rayleigh number. 
Arbitrarily small external disturbances can play a crucial role in determining the 
complete evolution and may, as in the analysis of (7.12)-(7.19), lead to a situation 
in which a new roll pattern is almost established owing to the natural evolution, but 
is then modified again by external disturbances. The final state could then depend 
on the precise way in which the perturbation (7.12) is triggered, with a centred 
disturbance presumably equivalent, in some sense, to a non-zero value of $ at a single 
value of X. These considerations could have an important bearing on experimental 
observations, and of course the significance and size of external effects may differ from 
experiment to experiment. In  the present analysis it is assumed that the natural 
evolution is of primary significance and it seems likely that this would generally be 
the case. If sufficiently large and widespread external disturbances were allowed there 
would of course be no reason for the flow to follow the evolutionary pattern described 
in the present work. 
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8. Numerical results 
The numerical experiments were designed to test the properties outlined in the 

previous section and to study the evolution in situations where multiple stable states 
exist a t  the new Rayleigh number. In most cases the initial configuration was taken 
to be that which would be expected to occur when the Rayleigh number just exceeds 
its critical value so that the solution is either even or odd (C = 0,n or C = in, in) 
and there is no phase winding (p, = $ox = 0). These four states are labelled A and 
B in figures 1 and 2, where the steady-state solutions for Prandtl numbers P = 10 
and P = 0.2 (respectively) are displayed. In both cases the value of x is chosen to 
correspond to a semi-aspect ratio L = 5, which means that the two odd solutions (at 
A) are stable and the two even solutions (at B) are unstable. The class I1 solutions 
correspond to points of intersection on the vertical lines in the figures, are entirely 
unstable, and so of relatively minor significance. The class I solutions correspond to 
points of intersection on the sinusoidal curves and their stability characteristics are 
labelled according to the results (7.5) and (7 .7) .  Each stable section of these curves 
is associated with a fixed number of rolls, as labelled and given roughly by the formula 
(1 .7)  ; each transition between a state with n rolls and one with n + 2 rolls (which can 
only be ascertained by calculation of the sidewall solution (2.21)) occurs at  a point 
on the unstable section of the curve (Daniels 1981). 

The two situations shown in figures 1 and 2 are chosen to represent the two distinct 
types of behaviour that can occur as the local Rayleigh number A is increased from 
zero. In figure 1 the system can change by a relatively small amount as the value 
of A increases, with a stable steady-state solution of 7 rolls always available on the 
section AC. In  contrast, in figure 2 the number of rolls must continually decrease as 
the value of A is raised; of course with L = 5 the assumptions on which the theory 
is based (namely L + 1 and R-R, = O(L-')) are effectively violated, and this is 
reflected by the fact that the number of rolls must eventually decrease to one in this 
case. In reality only the value of x is needed to produce figure 2, and so L can in 
fact be taken as any value that satisfies (2.26). With L = 5 the results remain 
physically realistic provided that A is not too large, and this particular value of L 
is selected merely to provide an idea of the overall flow pattern in a specific case (see 
figures 5, 7 and 9 below). 

The results pertaining to the steady states of figure 1 are first described. The 
numerical scheme was tested by starting from the initial profile 

$(X ,O)  = $,(X) = poX+Co with po = 0, C, = in ,  (8.1) 

which is one of the two stable solutions at  A. The value of d was set at 0.5 in (7.1) 
and the solution smoothly evolved to the final state 

$ ( X ,  00) = qlX+C, with pl = 0.05, C, = in,  (8.2) 

which corresponds to the point D in figure 1. The value of $(0,7) remained at  in 
throughout the evolution and $ x ( X ,  7) remained an even function of X, confirming 
the predictions of $7.3 that if the initial configuration is that of an odd (or even) 
solution it will remain so for all time. A second run with the same initial conditions 
but with A = 5 resulted in a similar transition but terminating with q1 = 0.21, C, = i x  
corresponding to the point E in figure 1 .  The third run was started from the unstable 
(even) state at  B with A = 0.5 and 

po = 0, C, = 0, (8.3) 
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- 0.05 

30 

FIGURE 4. Properties of the solution $ ( X ,  7 )  for the transition from the state 
(8.4) near B in figure 1 to the stable state at D. 

and this evolved to p1 = -0.1, C, = 0, the solution remaining even throughout the 
evolution. Of course this means that the solution has evolved to an unstable state 
(the point F in figure 1).  The reason is that the steady-state solution at F is only 
destabilized by the even part of a disturbance to 4 ,  and if (8.3) is regarded as a 
perturbation to the final state ql,  C, it is seen that no such component is present. 
In  practice, either through rounding errors in the computations or possibly small 
disturbances in experiments, the solution would eventually diverge from this state 
on a timescale depending on the size of the disturbance. This was confirmed by 
replacing the initial profile (8.3) by 

po = 0, c, = 0.1. (8.4) 

The slightly non-zero value of C, now causes the solution to diverge from the point 
F (although its initial tendency is to approach that solution) and a second stage of 
evolution over a long timescale accomplishes the eventual transition to the stable 
state a t  D. The two stages are clearly shown in figure 4, and the results are consistent 
with an analytic solution for small A described in Appendix B. 

Figure 5 shows the streamline patterns a t  various stages during the evolution from 
the approximately even state (8.4) to the odd state a t  D. These are constructed from 
a composite expression for @ that coincides with the leading terms of the formal 
asymptotic expansions in each of the three zones of the container. For x < 0 it is 

x sin m, (8.5) 
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FIQURE 5. Streamline patterns at intervals of 0.1 for various values of 
7 for the transition of figure 4. 

where xl, x and X are as defined in $$2 and 5 ,  E = AL-', and d and b = br + ibi are 
given by (2.24) and (2.27) in which a = ei4(-1,7)/d2. A similar formula is used for 
x > 0. Because of the long timescale of the motion, the streamlines are approximate 
particle paths. 

The results pertaining to the steady-state solutions of figure 2 are now described. 
A number of results were obtained for A = 4.545, where there are six stable solutions 
available (at C, D, E in figure 2), four of which are even and two odd. There are also 
two unstable class I even solutions a t  F. The first run started from an initial 
configuration a t  the stable odd solution at A with qo = 0, C, = in. The solution 
remained odd and evolved to the stable solution a t  D, as shown in figure 6, with 

q, = -5.95, c, = in. (8.6) 

This is in fact the only possibility, since the solution must remain odd and D is the 
only available odd solution at A = 4.545. One of the even solutions can only be 
attained if the initial configuration has C, =+ $n,$n, and a summary of some 
experiments with different values of C, is given in table 1. In  all cases in which the 
solution converged to an even final state, the state which required the minimum 
change in q (i.e. the minimum decrease in the number of rolls) was selected; this was 
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Initial state Final state A = 4.545 

40 co 
0 - $7 
0 0 
0 0.1 
0 in 
0 ;a-0.1 
0 in 

41 Cl 
-5.95 -;a 

-5.95 i n  
-5.95 in  
-5.95 in 

- 5.00 0 
- 5.00 0 

TABLE 1 

FIGURE 6. Properties of the solution + ( X ,  7 )  for the transition from 
A in figure 2 to the stale state at D. 

the stable state at C, where ql = - 5.0. The unstable state a t  F should never be selected 
since it can be destabilized by either even or odd perturbations and the difference 
in the values of qo and q1 is effectively an odd perturbation of the solution at F. The 
stable even state a t  E is probably only attainable following a decrease in the Rayleigh 
number. The roll-pattern evolution for the transition from A to D is shown in 
figure 7. 

Some results were also obtained for A = 3.462, where there are two stable odd 
solutions (at J), four unstable odd solutions (at G, H) and two stable even solutions 
(at I). The first run was started from A with qo = 0, C, = +IT and converged to the 
unstable state a t  G ;  this is possible because the solution a t  G is only destabilized 
by the even part of a disturbance to q5 and none is present. The solution a t  H cannot 
be selected, since it is destabilized by an odd component in q5. From a practical 
viewpoint it is now of interest to consider what the ultimate fate of the same solution 
would be if a small perturbation is introduced so that 

qo = 0, c, = +IT--O.l. 

The solution initially approaches G, where it has the option of increasing q (with little 
change in C) to converge to the stable odd solution at J or of making a transition 
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FIQURE 7. Streamline patterns at intervals of 0.25 for various values 
of 7 for the transition of figure 6. 

5 

-5 

FIQURE 8. Properties of the solution & X ,  7) for the transition from the 
state (8.7) near A in figure 2 to the stable even state at I. 
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FIGURE 9. Streamline patterns a t  intervals of 0.25 for various values of 
7 for the transition of figure 8. 

to the stable even solution at I. As shown in figures 8 and 9, the latter course was 
followed. 

The results, including further tests in cases where a large number of steady-state 
solutions exist (e.g. L = 10, P = +, d = 15, where there are sixteen class I solutions), 
seem to suggest that the following conclusions can be drawn. If the system starts from 
a stable configuration (necessarily either even or odd) then it will tend to preserve 
its even or odd nature after an increase in the Rayleigh number and will converge 
to the steady-state solution requiring the minimum change in the number of rolls, 
given that the solution must remain even or odd. (This means that a stable state may 
exist which would require a change in the number of rolls by one fewer than that 
which actually occurs.) The exception to this rule occurs if the solution so selected 
should happen to be unstable, which is a relatively rare occurrence for moderately 
high values of A .  In  these cases a small perturbation to the even part of q5 is required 
to effect a transition from the even solution to the odd solution or vice versa. This 
transition involves a further change in the number of rolls by one. This last property 
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also suggests that if the Rayleigh number is raised by gradually incrementing its value 
by small amounts then in a situation such as that of figure 2 perturbations in the 
flow will result in these transitions as the maxima of the sinusoidal curves in figure 
2 are encountered. The number of rolls will then decrease by one a t  each transition. 

9. Discussion 
This work describes the evolution of the roll pattern in a two-dimensional container 

of large aspect ratio 2L following a change in the Rayleigh number. Significant 
adjustments in the roll pattern take place if the Rayleigh number is changed by an 
amount order L-l, although the prominent features of the evolution in the stress-free 
case are largely dependent on the value of the Prandtl number of the fluid which 
determines whether the number of rolls has to change. The mechanisms that affect 
the precise way in which changes in the roll pattern occur are described in detail in 
$67 and 8 and are a subtle combination of the stability characteristics of the flow 
and of the tendency to preserve the symmetry of the system. In all cases the 
adjustment of the roll pattern is just the last of three stages of evolution. When 
t = 0(1) the basic temperature field adjusts to the new Rayleigh number. The 
amplitude of convection then adjusts accordingly when t = O((B-Ro)-l) = O(L) ,  the 
lateral positioning of the rolls remaining unchanged during this time. However, the 
development of the boundary-layer region near each sidewall eventually penetrates 
into the core region when t = O(L2) and the roll pattern then changes. The adjustment 
is generally initiated a t  the sidewalls and spreads inwards to the centre of the 
container. 

Although the main emphasis in the numerical study of $8 is on the evolution 
following an increase in Rayleigh number, the present analysis is equally applicable 
to the evolution produced by a decrease in Rayleigh number, and it is clear that in 
many cases the flow will exhibit hysteresis. The amplitude adjustment when t = O ( L )  
is still described by the results of $4, with the core behaviour given by (4.4) if 
0 < A ,  < A,. If A, < 0 the core solution (4.4) becomes 

and the entire motion decays to zero on this timescale, the final state now being a 
subcritical one. 

The main drawbacks of the theory are the assumptions of two-dimensionality and 
stress-free horizontal boundaries, although it is not expected that the effect of rigid 
boundaries will necessitate any major changes. The main requirement is a knowledge 
of the parameters equivalent to 01, and /3 in the rigid case, which will again depend 
upon the Prandtl number and will determine whether the evolution is of the simple 
type (figure 1) or the more interesting type (figure 2). This will, however, require a 
large amount of numerical work. Some support for the applicability of the present 
work is a t  least provided by numerical and experimental observations of two- 
dimensional rolls, although aproper extension of the present work to three-dimensional 
systems also presents a formidable task. It is expected that the present type of 
structure is of most relevance in relatively narrow channels where the rolls are 
approximately normal to the (narrow) channel walls a t  the onset of convection. 
Larger rectangular planforms (Brown & Stewartson 1977 ; Normand 1981 ; Greenside 
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et al. 1982) or cylindrical geometries (Brown & Stewartson 1978) are subject to the 
much wider class of three-dimensional instabilities that can lead to complicated roll 
patterns of the type elegantly described by Cross (1982). 

Appendix A. Initial structure of the core solution in the final stage of 
evolution 

In this appendix the solution of the system (7.1) is described for 7 4 1 and it is 
shown to be consistent with the terminal behaviour of the boundary-layer evolution 
asF+co. 

For - 1 < X < 1 the solution evolves from the initial profile $,(X) in the form 
m 

$ -  x $ n ( x ) ~ ~ ,  (A 1)  
n -0 

where 1 d2n$o 
n!  dXZn 

$ =-- 

This solution does not satisfy the boundary conditions at X = f 1, and near X = - 1 
there is a region where 7 = (X+ 1)/74 = O(1) and 

m 

Substitution into the governing equation shows that gn satisfies the equation 

while the boundary condition at X = - 1 requires that 
m 00 x g h ( o ) ~ 4 ( ~ - ~ )  = -~d(a0+I/3Isin{2$,(-1)+~+ Z dngn(0)}) .  (A 5 )  

n - 1  n - 1  

Equating coefficients of 71(n-1) on each side then gives 

qk(0) = In (n 2 11, (A 6) 

where In can be determined in terms of the values of gz(0), i = 1, . . . , n- 1 .  The first 
few are 

1, = - 4 4 %  + 1/31 sin P$,( - 1)  +XI), 

1, = --+A IPI (92(0)cos{2$,(--1)+X}-~l(0)2sin{2$,(-~)+X}). 
4 = - ~ ~ l ~ I ~ l ~ ~ ~ ~ ~ ~ ~ ~ ~ , ~ - ~ ~ + x ~ ,  ] ( A 7 )  

The boundary conditions for g, are completed by the requirement of matching with 
the core solution (A l ) ,  which implies 

The solution of (A 4), (A 6) and (A 8) can be given in terms of parabolic-cylinder 
functions U and V (see Abramowitz & Stegun 1964, p. 686) as 

where 



150 P. G. Daniels 

and 
a,, - = - 2m+id(m -$) !Z2, I 

The leading-order solution is 

and by expressing g; in terms of the error function it can be verified that this is 
equivalent to the asymptotic solution (5.23) in the boundary layer. 

If the initial profile is one of the steady-state solutions of the system, q50xx = 0 
and the central region - 1 < X < 1 remains undisturbed until it is influenced by the 
spread and eventual interaction of the two boundary layers when 7 = 0 ( 1 ) ,  to 
produce the final steady-state configuration. Physically this corresponds to the initial 
development of the new roll pattern from the sidewalls of the container, a feature 
that can be observed in the numerical results of $8. 

Appendix B. Analytic solution of the final evolutionary system for small A 

close to critical, A 4 1. In the initial stage when 7 = 0(1), 
A complete analytic solution of the system (7 .1)  is possible for Rayleigh numbers 

q5 = q5A(X,7)+4 ( X,7)+ ..., (B 1) 

where the equations and initial conditions are 

(B 2) q57A.B = $ X k ,  A B q5*3B(X, 0) = q5A*B(X). 

If the initial conditions arise from the flow configuration at  a Rayleigh number also 
close to critical we would have q5*(X) = inn, dB(X) = qo X/A, but this assumption is 
not a prerequisite of the analysis; the solution can be construed, for example, as that 
following a decrease in the Rayleigh number from a finite value do > 0. The boundary 
conditions for and q5B are 

$$(*1 ,7 )  = 0, $:(*1,7) = - ~ ( . , T I P I S ~ ~ { ~ ~ ~ * ( + ~ , ? ) T X } ) .  (B 3) 

The solution for dA can be expressed as 
a, 

$ A ( ~ ,  7 )  = $, + c a,  e-im2x2T cos+mn(X+ l ) ,  1 034) 
m-1 

a ,  = s' q5A(X) cos+mn(X+ 1)  dX, 
-1 

so that in general there will be an adjustment in the roll pattern, with 

It then follows that 

as T-+ 00, where, from (B 

q5A(X,7)+&20 as 7+00.  

$B(X,7) - do7+dl+d2X+d3X2 

21, 
2d3 = do 
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and, from (B 3) ,  

so that the constants do, d,  and d, can be determined as 

do = $IPIcosXsina,, d,  = -iao-$I/31sinxcosa,, d,  =iIPIcosxsina,. (B 9) 

Thus as 7+ co 

q5 - &, + d ( d ,  r+dl  + d, X + d ,  X 2 ) ,  (B 10) 

indicating a second stage of evolution when 7 N A - l .  
A longer timescale r1 is defined by 

and a solution for q5 constructed in the form 

From terms of order d in (7 .1)  
Do = 2 D ,  

71 

and 
D, - 2D, = -f(ao + 1/31 sin ( 2 0 ,  + x}), 
D,+2D3 = --$(a,-~(P( sin{2D0--X}). 

After elimination of D, and D, this yields a single equation for Do: 

D 07 1 = $Pr sin 20,, DJO) = $,. (B 15) 

The required solution is the branch of 

Do = Tan-l (epr'l tan$ta,) (B 16) 

that  passes through &, a t  r1 = 0, and then 

If the initial configuration is a steady-state solution with = inn, then a, = nn, 
and do and d, are zero in (B 9). Convergence to the final state is completed when 
7 = O( l ) ,  with the even part of q5 always given by fLnx and thus no change in the even 
or odd nature of the roll pattern. I n  the final state p = Ad, = - ~ d ( a ,  + (- l)n pi) from 
(B 9), and this final state may be stable or unstable depending on the value of n. 

However, if q5* contains an even perturbation to  inx, a,  -+ nn and the solutions 
(B 16) and (B 17)  are generated on the longer timescale O(d- l ) .  If@, > 0 an odd state 
(C, +inn, n odd) is achieved as r1 3 00, while if < 0 an even state (C, -+inn, n even) 
is achieved, the corresponding values of p being ~d( /3 , -a0 )  and -+d((p,+a,) 
respectively. This is consistent with the stability criterion (7.5), which for A Q 1 
reduces to ( -  1)"/3, < 0. 

The solution (B 16) is useful in providing an analytical description of the transition, 
already mentioned in €37, that  can occur between an even and odd solution and as 
exhibited, for example, in the results of figures 4 and 8. I n  figure 4 the two timescales 
predicted by the above analysis are easily discernible. In figure 8 the situation is more 
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realistic, since the initial configuration, unlike that of figure 4, is a stable one, but 
now the timescales are less distinct in view of the larger value of A .  

Finally, it should be noted that the above analysis contains the essential ingredients 
of the final evolution for Rayleigh numbers in the range R-R, = O(L-2) when the 
long timescale (B 11) on which the even or odd nature of the roll pattern is established 
becomes t = O(L3).  There is now also a shorter timescale t = O(L2) when the shape 
of the core amplitude profile (now a function of X) is adjusted. Transitions restricted 
to this regime are clearly of minor interest, however, in view of the fact that there 
are just two stable solutions and these contain a fixed number of rolls. 
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